THEOREM 0.1. Let f be a function defined on a rectangle

$$
R := \{(t, y) : |t - t_0| < a, \ |y - y_0| < b\}, \ a, \ b > 0.
$$

such that

(i) f is bounded on R, i.e., there exists $M > 0$ such that $|f(t, y)| \leq M$ for all $(t, y) \in R$; (ii) f is Lipschitz continuous in variable y, uniformly in t i.e., there exists $L > 0$ such that

$$
|f(t, y_1) - f(t, y_2)| \le L|y_1 - y_2| \text{ for all } |t - t_0| < a.
$$

Then for $\varepsilon < \min\{\frac{1}{I}\}$ $\frac{1}{L}, \frac{b}{M}$ $\frac{b}{M}$, there exists a unique function $y:(t_0-\varepsilon,t_0+\varepsilon)\to R$ which is a solution to the initial value problem

$$
\begin{array}{rcl}\n\frac{dy}{dt} & = & f(t, y(t)) \\
y(t_0) & = & y_0.\n\end{array}\n\tag{0.1}
$$

The uniqueness is in the sense that if \tilde{y} defined on an interval $(t_0 - \eta, t_0 + \eta)$ is another solution of IVP (0.1) then

$$
\tilde{y}(x) = y(x)
$$
 for all $x \in (t_0 - \eta, t_0 + \eta) \cap (t_0 - \varepsilon, t_0 + \varepsilon)$.

Proof. Step I: A function $y:(t_0-\varepsilon,t_0+\varepsilon) \to \mathbb{R}$ is a solution to the differential equation (0.1) iff it is a solution of the integral equation

$$
y(t) = y_0 + \int_{t_0}^t f(s, y(s)) ds.
$$
 (0.2)

For if y is a solution of (0.1) then integrating from t_0 to t we get

$$
\int_{t_0}^t \frac{dy}{dt} = \int_{t_0}^t f(s, y(s)) ds
$$

and hence

$$
y(t) - y(t_0) = \int_{t_0}^t f(s, y(s)) ds
$$

which is (0.2). Conversely, let y solves the integral equation (0.2). Then $y(t_0) = y_0$ and by fundamental theorem of integral calculus, y is differentable and its derivative is given by

$$
\frac{dy}{dt} = f(t, y(t)).
$$

Step II: Existence of solution- Picard's iteration scheme

Define functions $y_0(t) = y_0$ for all t, y_1 as

$$
y_1(t) = y_0 + \int_{t_0}^t f(s, y_0(s)) ds = y_0 + \int_{t_0}^t f(s, y_0) ds,
$$

and functions y_k which are iteratively defined as

$$
y_k(t) = y_0 + \int_{t_0}^t f(s, y_{k-1}(s)) ds.
$$
 (0.3)

By Fundamental theorem of integral calculus, the functions $\{y_k\}$ are differentiable.

Claim 1: There exists $\varepsilon_1 > 0$, independent of k, such that $(t, y_k(t)) \in R$ for all $t \in$ $(t_0 - \varepsilon_1, t_0 + \varepsilon_1).$ Proof of Claim 1: We have

$$
|y_k(t) - y_0| = |\int_{t_0}^t f(s, y_{k-1}(s)) ds|
$$

\n
$$
\leq \int_{t_0}^t |f(s, y_{k-1}(s)) ds|
$$

\n
$$
\leq M|t - t_0|.
$$

Thus if we choose $\varepsilon_1 < \frac{b}{b}$ $\frac{b}{M}$, then $|y_k(t) - y_0| < b$ for all $t \in (t_0 - \varepsilon_1, t_0 + \varepsilon_1)$ and the claim follows.

Claim 2: (Convergence of successive approximations) The sequence $\{y_k\}$ converges uniformly to a function y in an interval $(t_0 - \varepsilon, t_0 + \varepsilon)$ for $0 < \varepsilon \leq \varepsilon_1$. Proof of Claim 2: Note that

$$
|y_1(t) - y_0(t)| \le \int_{t_0}^t (f(s, y_0(s)) ds \le M(t - t_0)
$$

and that

$$
|y_2(t) - y_1(t)| = | \int_{t_0}^t \{ f(s, y_1(s)) - f(s, y_0(s)) \} ds |
$$

\n
$$
\leq \int_{t_0}^t |f(s, y_1(s)) - f(s, y_0(s))| ds
$$

\n
$$
\leq L \int_{t_0}^t |y_1(s) - y_0(s)| ds
$$

\n
$$
\leq LM \int_{t_0}^t (s - t_0) ds
$$

\n
$$
= LM \frac{(t - t_0)^2}{2}.
$$

Ex. Prove by induction

$$
|y_{n+1}(t) - y_n(t)| \le M \frac{L^n (t - t_0)^{n+1}}{(n+1)!}
$$

Thus, for $m \geq n$ we have

$$
|y_m(t) - y_n(t)| \le |y_m(t) - y_{m-1}(t)| + |y_{m-1}(t) - y_{m-2}(t)| + \dots + |y_{n+1}(t) - y_n(t)|
$$

\n
$$
\le \frac{M}{L} \sum_{k=n}^{m} \frac{[L(t - t_0)]^k}{k!}
$$

\n
$$
= \frac{M}{L} (S_m - S_{n-1})
$$
 (0.4)

where $S_n = \sum_{n=1}^n$ $_{k=0}$ $[L(t-t_0)]^k$ $\frac{(-t_0)}{k!}$ is the *n*th partial sum of the exponential series $e^{L(t-t_0)}$ which converges for all values of $(t - t_0)$ and in particular for $|t - t_0| \le a$. Note that

$$
y_n(t) = (y_n(t) - y_{n-1}(t)) + (y_{n-1}(t) - y_{n-2}(t)) + \ldots + (y_1(t) - y_0(t)) + y_0(t)
$$

= $y_0(t) + \sum_{k=1}^n (y_k(t) - y_{k-1}(t))$

and (0.4) shows that the partial sums of the series $y_0(t) + \sum_{n=1}^{\infty}$ $_{k=1}$ $(y_k(t)-y_{k-1}(t))$ is dominated by the partial sums of the series for $e^{L(t-t_0)}$ for all t. Thus, the series $y_0(t) + \sum_{n=0}^{\infty}$ $_{k=1}$ $(y_k(t)-y_{k-1}(t))$ converges absolutely for $|t-t_0| < \varepsilon_1$ and converges to a function denoted by $y(t)$ for $|t-t_0| < \varepsilon_1$ ε_1 .

Thus $y_n(t) \to y(t)$ for $|t - t_0| < \varepsilon_1$ pointwise. This convergence is uniform since,

$$
|y_n(t) - y(t)| = |\sum_{k=n+1}^{\infty} y_k(t) - y_{k-1}(t)|
$$

\n
$$
\leq \frac{M}{L} \sum_{k=n+1}^{\infty} \frac{(L|t - t_0|)^k}{k!}
$$

\n
$$
\leq ML \sum_{k=n+1}^{\infty} \frac{(La)^k}{k!} = ML|e^{aL} - T_n|
$$

where $T_n = \sum_{n=1}^n$ $_{k=0}$ $[La]^k$ $\frac{a}{k!}$ is the *n*th partial sum of the exponential series e^{aL} . Since $|e^{aL}-T_n| \to 0$ as $n \to \infty$, independent of t, it follows that y_n converges uniformly to y on $(t_0 - \varepsilon_1, t_0 + \varepsilon_1)$

Claim 3: y is a solution of the IVP.

Proof of Claim 3: Since $y_k(t_0) = y_0$ for all k, taking limit as $k \to \infty$ we get $y(t_0) = y_0$. Furthermore, observe that the sequence of functions $\{f_k\}_k$ where $f_k(s) = f(s, y_k(s))$ is uniformly convergent. To see this, consider

$$
|f_m(s) - f_n(s)| = |f(s, y_m(s)) - f(s, y_n(s))| \le L|y_m(s) - y_n(s)|.
$$

Since $\{y_k\}$ is uniformly convergent for $|t - t_0| < \varepsilon$ and hence uniformly Cauchy sequence, it follows that $\{f_k\}_k$ is uniformly Cauchy sequence and hence is uniformly convergent for $|t-t_0| < \varepsilon$. Moreover,

$$
|f_m(s) - f(s, y(s))| = |f(s, y_m(s)) - f(s, y(s))| \le L|y_m(s) - y(s)|
$$

implies that $f_m(t) \to f(t, y(t))$ uniformly for $|t - t_0| < \varepsilon$. Taking limit as $k \to \infty$ in (0.3) we get

$$
y(t) = y_0 + \lim_{k \to \infty} \int_{t_0}^t f(s, y_k(s)) ds = y_0 + \int_{t_0}^t \lim_{k \to \infty} f(s, y_k(s)) ds = y_0 + \int_{t_0}^t f(s, y(s)) ds.
$$

Thus $y(t)$ is solution of the IVP for $|t-t_0| < \varepsilon$ where $\varepsilon < \min\{a, \frac{b}{M}\}.$

Remark: Note that for the existence of solution it suffices to choose $\varepsilon < \frac{b}{M}$, however, the proof of uniqueness requires $\varepsilon < \min\{\frac{1}{l}\}$ $\frac{1}{L}, \frac{b}{N}$ $\frac{b}{M}$ as can be seen below-

Step III: Uniqueness

Let y defined on $(t_0-\varepsilon, t_0+\varepsilon)$ for some $0 < \varepsilon < \min\{\frac{1}{L}\}$ $\frac{1}{L},\frac{b}{N}$ $\frac{b}{M}$ as obtained above and \tilde{y} defined on $(t_0-\delta, t_0+\delta)$ for some $\delta > 0$ be solutions of the IVP (0.1). Let $I = (t_0-\varepsilon, t_0+\varepsilon) \cap (t_0-\delta, t_0+\delta)$ and suppose there exists $t_1 \in I$ such that $y(t_1) \neq \tilde{y}(t_1)$. Thus $\sup_{s \in I} |y(s) - \tilde{y}(s)| = m_0(\text{say})$ is strictly positive. Since both y and \tilde{y} are solutions of the IVP and hence of the integral equation (0.3) we have

$$
|y(t) - \tilde{y}(t)| = |\int_{t_0}^t (f(s, y(s)) - f(s, \tilde{y}(s))) ds|
$$

\n
$$
\leq \int_{t_0}^t |f(s, y(s)) - f(s, \tilde{y}(s))| ds
$$

\n
$$
\leq L \int_{t_0}^t |y(s) - \tilde{y}(s)| ds
$$

\n
$$
\leq L|t - t_0| \sup_{s \in I} |y(s) - \tilde{y}(s)|
$$

\n
$$
\leq L \varepsilon m_0.
$$

Taking supremum on l.h.s. as t varies in I we get $m_0 \leq L \varepsilon m_0$, i.e., $1 \leq L \varepsilon$. But we chose ε such that $\varepsilon < \frac{1}{L}$, thus we obtain a contradiction. Hence $m_0 = 0$ and $y \equiv \tilde{y}$ on I.