Theorem 0.1. (Existence of ε -approximate solution) Let f be a continuous function defined on the rectangle

$$
R := \{(t, y) : |t - t_0| \le a, |y - y_0| \le b\}.
$$

Given $\varepsilon > 0$ there exists an ε -approximate solution φ of the initial value problem

$$
\begin{array}{rcl}\n\frac{dy}{dt} & = & f(t, y(t)) \\
y(t_0) & = & y_0\n\end{array}\n\bigg\} \tag{0.1}
$$

defined on an interval $I = (t_0, \eta, t_0 + \eta)$ such that

$$
|\varphi(t) - \varphi(s)| < M|t - s| \quad \text{for all} \quad s, t \in I \tag{0.2}
$$

where $M = \sup_{B} |f(t, y)|$, i.e., φ is Lipshcitz continuous on I.

Proof. Recall that φ is said to be an ε - approximate solution of (0.1) on an interval I if (i) φ is continuous on I with $(t, \varphi(t)) \in R$;

(ii) φ is C^1 on I except possibly on a finite set of points S on I, where φ' may be discontinuous; (iii) $\varphi'(t) - f(t, \varphi(t)) \leq \varepsilon$ on $I \setminus S$. We will construct a piecewise linear ε approximate solution. First, the solution will be constructed to the right of t_0 .

Step I: Draw a line segment

$$
l(s) = y_0 + f(t_0, y_0)(t - t_0)
$$

through the point (t_0, y_0) . We see that $l(s) \in R$ if

$$
|s - t_0| \le a \tag{0.3}
$$

and

$$
|l(s) - y_0| = |f(t_0, y_0)||t - t_0| \le M|t - t_0| \le M\delta \le b
$$

if we choose $\eta \le \min\{a, \frac{b}{M}\}.$ Now consider the interval $I = [t_0 - \eta, t_0 + \eta]$. Since R closed and bounded set and f is continuous on R and thus uniformly continuous. Hence given $\varepsilon > 0$, there exists $\delta_1 > 0$ such that

$$
|f(t,y) - f(s,x)| < \varepsilon \quad \text{whenever} \quad |t - s| < \delta_1, |y - x| < \delta_1. \tag{0.4}
$$

Let

$$
\delta < \min\{\delta_1, \frac{\delta_1}{M}\}\tag{0.5}
$$

Divide the interval $[t_0, t_0 + \eta]$ into subintervals of length less than δ by choosing points

$$
t_0 < t_1 < t_2 < \ldots < t_n = t_0 + \eta
$$

such that $|t_i - t_{i-1}| < \delta$ for each $i = 1, \ldots, n$. Define

$$
\varphi_1(s) = l(s) = y_0 + f(t_0, y_0)(t - t_0) \quad \text{for} \quad t_0 \le s \le t_1 \tag{0.6}
$$

$$
\varphi_2(s) = y_1 + f(t_1, y_1)(t - t_1)
$$
 for $s \in [t_1, t_2]$ where $y_1 = \varphi_1(t_1)$ (0.7)

In general, denote $y_{i-1} = \varphi_{i-1}(t_{i-1})$ and define

$$
\varphi_i(s) = y_{i-1} + f(t_{i-1}, y_{i-1})(t - t_{i-1})
$$
 for $s \in [t_{i-1}, t_i]$ for $i = 1, ..., n$. (0.8)

Let

$$
\varphi(s) = \varphi_i(s) \quad \text{for} \quad s \in [t_{i-1}.t_i], \quad 1 \le i \le n. \tag{0.9}
$$

Step II φ is an ε - approximate solution of (0.1). Let $s, t \in I$ and $s \in [t_{i-1}, t_i], t \in [t_{j-1}, t_j]$ with $i < j$.

$$
|\varphi(t) - \varphi(s)|
$$

\n
$$
\leq |\varphi(t) - \varphi(t_{j-1})| + |\varphi(t_{j-1}) - \varphi(t_{j-2})| + \dots + |\varphi(t_i) - \varphi(s)|
$$

\n
$$
\leq |f(t_{j-1}, y_{j-1})|(t - t_{j-1}) + |f(t_{j-2}, y_{j-2})|(t_{j-1} - t_{j-2}) + \dots + |f(t_{i-1}, y_{i-1})|(t_i - s)
$$

\n
$$
\leq M(t - s)
$$
\n(0.10)

In particular, φ is continuous. Also, from definition since $\varphi = \varphi_i$ on $[t_{i-1}, t_i]$, φ is C^1 on $I \setminus S$ where $S = \{t_1, t_2, \ldots, t_n = t_0 - \eta\}$. From (0.10) and since $\eta < \frac{b}{M}$ it follows that

$$
(t, \varphi(t)) \in R
$$
 for all $t \in I$.

For $s \in I$, say $s \in [t_{i-1}, t_i]$, $\varphi'(s) = \varphi'_i(s) = f(t_{i-1}, y_{i-1}) = f(t_{i-1}, \varphi(t_{i-1}))$ and hence

$$
|\varphi'(s) - f(s, \varphi(s))| = |f(t_{i-1}, \varphi(t_{i-1})) - f(s, \varphi_i(s))| \le \varepsilon
$$
\n(0.11)

since

$$
|\varphi_i(s) - \varphi(t_{i-1})| \le M|s - t_{i-1}| \le \delta_1
$$

Similarly, φ can be extended to the left of t_0 .

Lemma 0.2. (Ascoli's lemma) Let I be a bounded interval and $\mathcal{F} = \{f\}$ be an infinite, uniformly bounded, equicontinuous set of functions. Then F contains a sequence $\{f_n\}$, $n =$ $1, 2, 3, \ldots$ which is uniformly convergent on I .

Proof: List the rationals in Q as $\{r_k\}, k = 1, 2, 3, \ldots$ Let $A_1 = \{f(r_1) : f \in \mathcal{F}, k = 1, 2, 3, \ldots\}$ 1, 2, 3, ...}. Since F is uniformly bounded, there exists $M > 0$ such that

$$
|f(x)| \le M \quad \text{for all} \quad x \in I, \quad \text{for all} \quad f \in \mathcal{F}.\tag{0.12}
$$

 \Box

Then A_1 is an infinite set of real numbers bounded in I and hence has a convergent subsequence, say $f_{11}(r_1), f_{21}(r_1), f_{31}(r_1), \ldots, f_{k1}(r_1) \ldots$ Let

$$
\mathcal{F}_1 := \{f_{k1}\}_{k \in I\!\!N}.
$$

Again, $A_2 := \{ f k 1(r_2) : k = 1, 2, 3, \ldots \}$ is a bounded set of real numbers and hence has a convergent subsequence, $\{f_{k2}\}_{k\in\mathbb{N}}$. Let

$$
\mathcal{F}_2 := \{f_{k2}\}_{k \in I\!\!N} \subset \mathcal{F}_1.
$$

Continuing thus we obtain sets

$$
\mathcal{F}_j := \{f_{kj}\}_{k \in \mathbb{N}} \subset \mathcal{F}_{j-1} \subset \mathcal{F}_{j-2} \subset \ldots \subset \mathcal{F}_2 \subset \mathcal{F}_1
$$

with the property that

$$
\{f_{kj}(r_i)\}\ \text{ is convergent for all }\ i\leq j. \tag{0.13}
$$

Now define the sequence of functions

$$
f_k = f_{kk}, \ k = 1, 2, 3, \dots
$$
\n^(0.14)

Claim: $\{f_k\}_{k\in\mathbb{N}}$ is uniformly convergent on I.

We show that $\{f_k\}$ is uniformly Cauchy sequence. Since F is equicontinuous, given $\varepsilon > 0$ there exists $\delta > 0$ such that

$$
|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon \quad \text{for all } f \in \mathcal{F}.\tag{0.15}
$$

Let $x \in I$ and $r_j \in \mathbb{Q}$ such that

$$
|x - r_j| < \delta.
$$

Then

$$
|f_k(x) - f_k(r_j)| < \varepsilon.
$$

Also, since $\{f_k(r_j)\}_k = \{f_{kk}(r_j)\}_k$ is convergent for all $k \geq j$, given $\varepsilon > 0$ there exists n_0 such that for all $m, n \geq n_0$,

$$
|f_m(r_j) - f_n(r_j)| < \varepsilon.
$$

Thus, for $m, n \geq n_0$

$$
|f_n(x) - f_m(x)| = |f_n(x) - f_n(r_j) + f_n(r_j) - f_m(r_j) + f_m(r_j) - f_m(x)|
$$

\n
$$
\leq |f_n(x) - f_n(r_j)| + |f_n(r_j) - f_m(r_j)| + |f_m(r_j) - f_m(x)|
$$

\n
$$
< \varepsilon + \varepsilon + \varepsilon = 3\varepsilon.
$$

Theorem 0.3. (Cauchy-Peano Existence theorem:) If f is a continuous function on a rectangle R, then there exists a solution $\varphi \in C^1$ of (0.1) on $|t-t_0| \leq \eta$ for which $\varphi(t_0) = y_0$.

Proof. Let $\varepsilon_n > 0$ denote a decreasing of positive numbers such that $\varepsilon_n \to 0$. Let φ_n denote ε_n -approximate solution of (0.1) which exists on an interval $I = [t_0 - \eta, t_0 + \eta]$ where $\eta = \min\{a, \frac{b}{M}\}\$ from Theorem 0.1 which was contructed as piecewise linear path as

$$
\varphi_n(s) = \varphi_{n,i}(s) \quad \text{for} \quad s \in [t_{i-1}.t_i], \quad 1 \le i \le n \tag{0.16}
$$

where

$$
\varphi_{n,1}(s) = l(s) = y_0 + f(t_0, y_0)(t - t_0) \quad \text{for} \quad t_0 \le s \le t_1 \tag{0.17}
$$

$$
\varphi_{2,n}(s) = y_1 + f(t_1, y_1)(t - t_1) \quad \text{for} \quad s \in [t_1, t_2] \quad \text{where} \quad y_1 = \varphi_1(t_1) \tag{0.18}
$$

in general, denote $y_{i-1} = \varphi_{i-1}(t_{i-1})$ and define

$$
\varphi_{n,i}(s) = y_{i-1} + f(t_{i-1}, y_{i-1})(t - t_{i-1}) \quad \text{for} \quad s \in [t_{i-1}, t_i] \quad \text{for} \quad i = 1, \dots, n. \tag{0.19}
$$

Here S_n is a finite set of points where the function φ_n is discontinuous. For all n, each φ_n satisfies

$$
|\varphi_n(t) - \varphi_n(s)| < M|t - s| \quad \text{for all} \quad s, t \in I \tag{0.20}
$$

where $M = \sup$ $\sup_R |f(t, y)|$, i.e., φ_n is Lipshcitz continuous on *I*. In particular, for $t \in I$,

$$
|\varphi_n(t)| = |\varphi_n(t) - \varphi_n(t_0) + \varphi_n(t_0)| \leq |\varphi_n(t) - \varphi_n(t_0)| + |\varphi_n(t_0)|
$$

$$
< M|t - t_0| + |\varphi_n(t_0)| < M\eta + |\varphi_n(t_0)|
$$

hence $\{\varphi_n\}$ is uniformly bounded on I. Also, from (0.20) it follows that $\{\varphi_n\}$ is equicontinuous on I. From Ascoli's Lemma, it follows that $\{\varphi_n\}$ has a uniformly convergent subsequence on I, say $\{\varphi_{n_k}\}\$ where φ_{n_k} is ε_{n_k} -approximate solution of (0.1) . Let $\varphi_{n_k} \to \varphi$ uniformly on I. Then φ is continuous on I. Also,

$$
\varphi(t_0) = \lim_{n_k \to \infty} \varphi_{n_k}(t_0) = y_0.
$$

To prove that φ satisfies the differential equation on I, we note that φ_{n_k} satisfies (0.1) on I except for finitely many points. Hence we can write

$$
\varphi_{n_k}(t) = y_0 + \int_{t_0}^t \{f(s, \varphi_{n_k}(s)) + \Delta_{n_k}(s)\} ds
$$

where

$$
\Delta_n(s) = \varphi'_{n_k}(s) - f(s, \varphi_{n_k}(s)) \quad \text{at} \quad \text{where } \varphi'_{n_k}(s) \text{ exists,} \tag{0.21}
$$
\n
$$
= 0 \quad \text{otherwise} \tag{0.22}
$$

Now taking limit as $n_k \to \infty$, $f(s, \varphi_{n_k}(s)) \to f(s, \varphi(s))$ and $\int_{t_0}^t \{f(s, \varphi_{n_k}(s)) ds \to \int_{t_0}^t \{f(s, \varphi(s)) ds\}$ since $\varphi_{n_k} \to \varphi$ uniformly on *I*. While since φ_{n_k} is an ε_{n_k} approximate solution

$$
\int_{t_0}^t |\Delta_n(s)| ds = \int_{t_0}^t |\varphi_{n_k}'(s) - f(s, \varphi_{n_k}(s))| ds \le \varepsilon_{n_k} |t - t_0| \to 0 \quad \text{as} \quad n_k \to \infty.
$$

It follows that φ is solution of (0.1).

 \Box