
TYBSc Complex Analysis Notes

Jyotshana V. Prajapat
Department of Mathematics

University of Mumbai

February 20, 2017

1 Cauchy Goursat theorem

LEMMA 1.1 Let f : A → C be an analytic function such that f ′(z) is continuous in a

domain A ⊂ C, then
∫
C

f(z) dz = 0 for any simple closed curve C ⊂ A.

Remark: The lemma is proved using Green’s theorem, a result of Real analysis; for which
we will use the identification of complex plane with IR2, x + iy 7→ (x, y) so that a function
on complex domain can be thought of as function of two real variables.
Proof:- Let γ : [a, b] → A, γ(t) = x(t) + iy(t) denote a parametrization of C and write
f(z) = u(x, y) + iv(x, y). Then∫

C

f(z) dz =

∫ b

a

f(γ(t)) · γ′(t) dt

=

∫ b

a

[u(γ(t)) + iv(γ(t))] · (x′(t) + iy′(t)) dt

=

∫ b

a

{
u(γ(t))x′(t)− v(γ(t))y′(t) + i[u(γ(t))y′(t) + v(γ(t))x′(t)]

}
dt

=

∫ b

a

{
u(γ(t))x′(t)− v(γ(t))y′(t)

}
dt+ i

∫ b

a

{
u(γ(t))y′(t) + v(γ(t))x′(t)

}
dt

=

∫ b

a

{
u(x(t) + iy(t))x′(t)− v(x(t) + iy(t))y′(t)

}
dt

+i

∫ b

a

{
u(x(t) + iy(t))y′(t) + v(x(t) + iy(t))x′(t)

}
dt.
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Therefore ∫
C

f(z)dz =

∫
C

[u(x, y)dx− v(x, y)dy] + i

∫
C

[v(x, y)dx+ u(x, y)dy].

By Greens’ theorem, we have∫
C

[u(x, y)dx− v(x, y)dy] =

∫∫
R

[−vx − uy] dxdy

and ∫
C

[v(x, y)dx+ u(x, y)dy] =

∫∫
R

[ux − vy] dxdy

where R is the region enclosed by simple closed curve C. Hence∫
C

f(z)dz =

∫∫
R

(−vx − uy) dxdy + i

∫∫
R

(ux − vy)dxdy.

But since f is analytic in A, by C-R equations ux = vy and uy = −vx. It follows that∫
C

f(z) dz = 0.

THEOREM 1.1 Cauchy Goursat theorem
Let R ⊂ C be a rectangle of length S and f : R → C be an analytic function. Let D be a

domain such that D ⊂ R and ∂D is a simple closed curve. Then

∫
∂D

f(z)dz = 0

Proof:- Since f is analytic inR, given ε > 0, there exists δ > 0 such that
∣∣∣f(z)−f(z0)

z−z0 −f ′(z0)
∣∣∣ <

ε whenever |z − z0| < δ. Cover D by rectangles R(z) centered at z = a+ ib ∈ D defined as

R(z) := {x+ iy : |x− a| < ρ, |y − b| < ρ}

where ρ = min{ δ√
2
, dist.(∂D, ∂R)}. Note that dist.(∂D, ∂R) > 0 (Why?)

Since D ⊂ R is compact, there exists finitely many points, say z1, z2, · · · , zN ∈ D and

rectangles Rj centered at zj such that D ⊂
N⋃
j=1

Rj. Moreover, for z ∈ Rj

∣∣∣f(z)− f(zj)

z − zj
− f ′(zj)

∣∣∣ < ε
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Rewrite D =

[⋃
j∈I1

(Rj ∩ D)

]⋃[⋃
j∈I2

(Rj ∩ D)

]
, where I1 is index set for all rectangles Rj

which lie in the interior of D. The second union is over all rectangles with j ∈ I2 for which
the part of boundary Dj = Rj ∩ ∂D lies in the interior of Rj. Now for each j define,

δj(z) =
f(z)− f(zj)

z − zj
− f ′(zj)

so that
f(z) = f(zj) + f ′(zj)(z − zj) + δj(z)(z − zj) in Rj.

Tracing the curve in anticlockwise direction, we see that∫
∂D

f(z)dz =
∑
j∈I1

∫
∂Rj

f(z)dz +
∑
j∈I2

∫
Cj∪Dj

f(z) dz

where Cj denotes the part of boundary of Rj which lies in D for j ∈ I2.

For j ∈ I1,∫
∂Rj

f(z)dz =

∫
∂Rj

[
f(zj) + f ′(zj)(z − zj) + δj(z)(z − zj)

]
dz

= f(zj)

∫
∂Rj

dz + f ′(zj)

∫
∂Rj

dz +

∫
∂Rj

δj(z)(z − zj)dz

=

∫
∂Rj

δj(z)(z − zj)dz

since by Lemma 1.1
∫
∂Rj

dz = 0 =
∫
∂Rj

(z − zj)dz (verify conditions of lemma). Therefore,∣∣∣∫
∂Rj

f(z)
∣∣∣ =

∣∣∣∫
∂Rj

δj(z)(z − zj)dz
∣∣∣

≤
∫
∂Rj

|δj(z)| · |(z − zj)| · |dz|

<

∫
∂Rj

ε · |z − zj| · |dz|

= ε
√

2Sj

∫
∂Rj

|dz|

= ε
√

2Sj · 4Sj = 4
√

2εS2
j = 4

√
2ε · A(Rj)
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where Sj is the length of Rj and A(Rj) denotes the area of Rj. Similarly,∣∣∣ ∫
Cj∪Dj

f(z)dz
∣∣∣ ≤ ∫

Cj∪Dj

|f(z)| · |dz|

≤
∫

Cj∪Dj

|δj(z)| · |z − zj| · |dz|

<

∫
Cj∪Dj

ε · |z − zj| · |dz|

= ε
√

2Sj

∫
Cj∪Dj

|dz|

< ε
√

2Sj(4Sj + l(Dj)) < ε
√

2(4A(Rj) + Sjl(Dj)) < ε
√

2(4A(Rj) + Sl(Dj))

where S is the length of R. Therefore∣∣∣∫
∂D

f(z)dz
∣∣∣ <

∑
j∈I1

4
√

2ε · A(Rj) +
∑
j∈I2

4ε
√

2A(Rj) +
∑
j∈I2

ε
√

2Sl(Dj)

= 4ε
√

2
N∑
j=1

A(Rj) + ε
√

2Sl(∂D) < ε
√

2 [4A(R) + Sl(∂D)]

for any ε > 0. It follows that
∣∣∣∫
∂D

f(z) dz
∣∣∣ = 0 and

∫
∂D

f(z) dz = 0.

2 Cauchy Integral formula and Taylor’s theorem

THEOREM 2.1 Cauchy Integral Formula
Let A be an open connected subset of C and f : A → C be an analytic function in A. Let
z0 ∈ A and r > 0 such that B(z0, r) ⊂ A. Then for any w ∈ B(z0, r) we have

f(w) =
1

2πi

∫
∂B(z0,r)

f(z)

z − w
dz. (2.1)

Proof:

Step I: We first prove

∫
∂B(z0,r)

1

z − w
dz = 2πi:

For given z0 ∈ A and w ∈ B(z0, r), let r1 > 0 such that B(w, r1) ⊂ B(z0, r). Write
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z = w + r1e
iθ, then dz = ir1e

iθ. Thus∫
∂B(w,r1)

1

z − w
dz =

∫ 2π

0

1

r1eiθ
· r1ie

iθ dθ = i

∫ 2π

0

dθ = 2πi.

Next we show that ∫
∂B(z0,r)

1

z − w
dz =

∫
∂B(w,r1)

1

z − w
dz.

Let AB, CD be a straight line segments joining points A and D on the circle ∂B(w, r1)
and the points B and C respectively, on the circle ∂B(z0, r). Consider the closed curve C1

traced in anticlockwise direction along segment
−→
AB, the arc of the circle ∂B(z0, r) from B

to C given by Γ(BC) := {z = z0 + reiθ : 0 ≤ θ ≤ π}, along the segment
−−→
CD and the circle

∂B(w, r1) from D to A given by Γ(DA) := {z = z0 + r1e
iθ : π ≤ θ ≤ 2π}. For z ∈ C1, z −w

is non zero in the interior of region, say R1, bounded by C1, and hence 1
z−w is analytic in

R1. By Cauchy-Goursat theorem ∫
C1

1

z − w
dz = 0

i.e., ∫ B

A

1

z − w
dz +

∫
Γ(BC)

1

z − w
dz +

∫ D

C

1

z − w
dz +

∫
Γ(DA)

1

z − w
dz = 0. (2.2)

Similarly, considering the closed curve C2 traced in anticlockwise direction along the arc of
the circle ∂B(z0, r1) from A to D given by Γ(AD) := {z = z0 + r1e

iθ : 0 ≤ θ ≤ π}, along the

segment
−−→
DC, the circle ∂B(w, r) from C to B given by Γ(CB) := {z = z0+reiθ : π ≤ θ ≤ 2π}

and finally the segment
−→
BA, we have for z ∈ C2, since z − w is non zero in the interior of

region, say R2, bounded by C2,∫
Γ(AD)

1

z − w
dz +

∫ C

D

1

z − w
dz +

∫
Γ(CB)

1

z − w
dz +

∫ A

B

1

z − w
dz = 0. (2.3)

Adding (2.2) and (2.3), it follows that
∫

∂B(z0,r)

1
z−w dz =

∫
∂B(w,r1)

1
z−w dz.

Step II: Due to Step I, (2.1) can be rewritten as∫
∂B(z0,r)

f(z)− f(w)

z − w
dz = 0.
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Since f : A→ C is analytic in A, for given ε > 0 there exists δ > 0 such that∣∣∣∣f(z)− f(w)

w − z
− f ′(w)

∣∣∣∣ < ε whenever |z − w| < δ

Choose r1 < δ, then∫
∂B(w,r1)

f(z)− f(w)

z − w
dz =

∫
∂B(w,r1)

(
f(z)− f(w)

z − w
− f ′(w)

)
+

∫
∂B(w,r1)

f ′(w) dz.

But by Cauchy Goursat’s theorem,
∫
∂B(w,r1)

f ′(w)dz = 0 since constant function is analytic

in B(w, r1). Hence∣∣∣∣∣∣∣
∫

∂B(w,r1)

f(z)− f(w)

z − w
dz

∣∣∣∣∣∣∣ ≤
∫

∂B(w,r1)

∣∣∣∣f(z)− f(w)

z − w
− f ′(w)

∣∣∣∣ |dz| < επr1 < επr.

Since ε > 0 can be chosen arbitrarily small, we conclude∫
∂B(w,r1)

f(z)− f(w)

z − w
dz = 0.

Again defining a closed curve as in Step I by joining ∂B(z0, r) with ∂B(w, r1) by a line

segment, since the function f(z)−f(w)
z−w is analytic in the region B(z0, r) \ B(w, r1), applying

Cauchy Goursat’s theorem we have∫
∂B(z0,r)

f(z)− f(w)

z − w
dz =

∫
∂B(w,r1)

f(z)− f(w)

z − w
dz = 0

which completes the proof of the theorem.

THEOREM 2.2 If f : Ω→ C is analytic in Ω then its derivative of all orders are analytic
in Ω. For all w ∈ B(z0, r) ⊂ Ω,

f (n)(w) =
n!

2πi

∫
∂B(z0,r)

f(z)

(z − w)n+1
dz.

Moreover, if M(r) is the maximum value of |f(z)| on ∂B(z0, r) then

|f (n)(w)| ≤ n!M(r)

rn
.
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Proof:

THEOREM 2.3 Taylor’s theorem: Suppose that f is analytic in a disc B(z0, R0). Then
f(z) has the power series representation

f(z) =
∞∑
n=0

an(z − z0)n

where

an =
fn(z0)

n!
=

1

2πi

∫
∂B(z0,r)

f(z)

(z − z0)n+1
dz

Proof:

3 Integration and differentiation of power series of com-

plex numbers

THEOREM 3.1 Let C be a simple closed curve in the interior of the disc of convergence

of the power series S(z) =
∞∑
n=0

an(z − z0)n and let g(z) be any function which is continuous

on C. Then the series
∞∑
n=0

g(z)an(z − z0)n can be integrated term by term over C and

∫
C

g(z)S(z) dz =
∞∑
n=0

∫
C

g(z)an(z − z0)n dz.

i.e., a complex power series can be integrated term by term over C within its disc of conver-
gence.

• A function is g is said to be continuous on C is for any parametrization γ : [a, b] → C of
C, the composition g ◦ γ : [a, b]→ C is continuous.

• Observe that g(z)S(z) =
∞∑
n=0

g(z)an(z − z0)n.

• Note that the result is more general than the one we prove for real power series. This
result will be used in the following theorem which proves term by term differentiation of
power series within its disc of convergence.
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THEOREM 3.2 Let C be a simple closed curve in the interior of the disc of convergence

of the power series S(z) =
∞∑
n=0

an(z − z0)n,

S ′(z) =
∞∑
n=1

nan(z − z0)n−1.

The above equality says that the sum of differentiated series is derivative of the sum. The
following proof is different from one given in Brown and Churchill.

Proof: Step I: We will first show that S(z) satisfies the Cauchy integral formula. Let

sn(z) =
n∑
k=0

ak(z − z0)k denote the sequence of partial sums of S(z). Since the function sn is

analytic in B(z0, R0), by Cauchy integral formula, for w ∈ B(z0, R) we have

sn(w) =
1

2πi

∫
C

sn(z)

(z − w)
dz

for a simple closed curve C = ∂B(w, r), B(w, r) ⊂ B(z0, R0). Applying Theorem 3.1 to the
r.h.s. with g(z) = 1

(z−w)
which is continous on C we have

lim
n→∞

1

2πi

∫
C

sn(z)

(z − w)
dz =

1

2πi

∫
C

S(z)

(z − w)
dz

while lim
n→∞

sn(w) = S(w). Thus

S(w) =
1

2πi

∫
C

S(z)

(z − w)
dz.

Step II:We have

S ′(w) = lim
h→0

S(w + h)− S(w)

h

= lim
h→0

1

2πi

∫
C

S(z)
1

h

(
1

(z − w − h)
− 1

(z − w)

)
dz

=
1

2πi

∫
C

S(z)
1

(z − w)2
dz

= lim
n→∞

1

2πi

∫
C

sn(z)
1

(z − w)2
dz from Theorem 3.1

= lim
n→∞

s′n(z) since sn(z) is analytic

= lim
n→∞

n∑
k=1

kak(z − z0)k−1.
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This shows that the series
∑
kak(z − z0)k−1 converges and its sum is S ′(z).

COROLLARY 3.1 S(z) is analytic in B(z0, R0).

THEOREM 3.3 Uniqueness of series representation:
If a series

∑
an(z−z0)n converges to f(z) at all ponts within the disc of convergence |z−z0| <

R then it is the Taylor series expansion for f centered at z0.

Remark: We have proved that analytic function has a power series representation (Taylor’s
theorem) and above shown that if a function can be represented by a power series, then it is
analytic within its disc of convergence. Complex differentiation implies existence of Taylor
series, which is different from ”real differentiation”.

4 Singularities

• Isolated singular point: A point z0 is called an isolated singular point of a map f : Ω→ C
if there exists a deleted neighbourhood of z0 say, 0 < ζ − z0| < δ ⊂ Ω in which f is analytic.

• Define double series of complex numbers
∑∞

n=−∞ an, its convergence and double power
series.

• Laurent’s theorem says that in neighbourhood os an isolated singular point, the function
has Laurent series expansion. It will be used to classify the isolated singular points:

THEOREM 4.1 Laurent’s theorem Suppose that a function f is analytic throughout
an annular domain A := {z ∈ C : R1 < |z − z0| < R2} centered at z0 and C ⊂ A be a
positively oriented simple closed curve around z0. Then for each z ∈ A, f(z) has the Laurent
series representation

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

bn
(z − z0)n

where

an =
1

2πi

∫
C

f(z)

(z − z0)n+1
dz, n = 0, 1, 2, 3, . . .

bn =
1

2πi

∫
C

f(z)

(z − z0)−n+1
dz, n = 1, 2, 3, . . . .
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The point z0 is said to be
• a removable singularity if bn = 0 for all n = 1, 2, 3, . . ..
• a pole if there exists some m such that bn 6= 0 for all n = 1, 2, . . . ,m and bn = 0 for all
n = m+ 1,m+ 2,m+ 3, . . .. In this case, z0 is said to be a pole of order m.
• an essential singularity if bn 6= 0 for infinitely many n.
• The constant b1 is defined to be the residue of f at the singular point z0 denoted
by Resf(z0) which is given by

Resf(z0) = b1 =
1

2πi

∫
C

f(z) dz.
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