1. Fundamental theorem of space curves

THEOREM 1.1. Given differentiable functions $\kappa(s) > 0$ and $\tau(s)$, $s \in (a, b) \subseteq \mathbb{R}$, there exists a regular parametrized curve $\gamma : (a, b) \to \mathbb{R}^3$ such that s is the arc length, $\kappa(s)$ is the curvature and $\tau(s)$ is the torsion of γ .

Moreover, if $\tilde{\gamma}$ is any other curve satisfying the same conditions, then there exists a rigid motion (an isometry) of I of \mathbb{R}^3 such that

$$
\tilde{\gamma} = I(\gamma)
$$

i.e., $\tilde{\gamma}(s) = \rho \circ \gamma(s) + a$ where ρ is a rotation and $a \in \mathbb{R}^3$ is some fixed vector.

Proof. Step 1: To construct a regular parametrized curve γ with curvature κ and torsion τ : The Serret- Frenet equations for space curves parametrised by arc length are

$$
\overrightarrow{t}'(s) = \kappa(s)\overrightarrow{n}(s)
$$

\n
$$
\overrightarrow{n}'(s) = -\kappa(s)\overrightarrow{t}(s) - \tau(s)\overrightarrow{b}(s)
$$

\n
$$
\overrightarrow{b}'(s) = \tau(s)\overrightarrow{n}(s)
$$

where $\overrightarrow{t}(s)$ is the unit tangent vector, $\overrightarrow{n}(s)$ is a unit normal vector and $\overrightarrow{b}(s)$ is unit binormal vector in \mathbb{R}^3 . Thus, for the given functions κ and τ consider the system of ordinary differential equations

$$
T'(s) = \kappa(s)N(s)
$$

\n
$$
N'(s) = -\kappa(s)T(s) - \tau(s)B(s)
$$

\n
$$
B'(s) = \tau(s)N(s)
$$
\n(1.1)

and we look for solution $F:(a,b)\to \mathbb{R}^9$, $F(s)=(T(s), N(s), B(s))$ with the initial condition $F(0) = (e_1, e_2, e_3)$

where $e_1 = (1, 0, 0), e_2 = (0, 1, 0)$ and $e_3 = (0, 0, 1)$ is the standard basis in \mathbb{R}^3 . In terms of F the system (1.1) can be written as

$$
\begin{array}{rcl}\n\frac{dF}{ds} & = & A(s)F(s) \\
F(s_0) & = & (1,0,0,0,1,0,0,0,1)\n\end{array}\n\bigg\} \tag{1.2}
$$

where $A(s)$ is a 9×9 matrix

$$
A(s) = \begin{pmatrix} O_{3\times 3} & \kappa(s)Id_{3\times 3} & O_{3\times 3} \\ -\kappa(s)Id_{3\times 3} & O_{3\times 3} & -\tau(s)Id_{3\times 3} \\ O_{3\times 3} & \tau(s)Id_{3\times 3} & O_{3\times 3} \end{pmatrix}
$$
(1.3)

where

$$
O_{3\times 3} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right)
$$

is the 3×3 zero matrix and

$$
Id_{3\times 3} = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)
$$

is the 3×3 identity matrix.

The existence and uniqueness theorem of ODE states: Given a map $X : (a, b) \times U \to \mathbb{R}^n$ which is Lipschitz continuous on an open set $U \subset \mathbb{R}^n$ and a point $(s_0, \hat{x}_1, \ldots, \hat{x}_n) \in (a, b) \times U$, there exists a unique solution $\alpha : (s_0 - \delta, s_0 + \delta) \to U$, $\delta > 0$ to the initial value problem

$$
\begin{array}{rcl}\n\alpha'(s) & = & X(s, \alpha(s)) \\
\alpha(s_0) & = & (\hat{x}_1, \dots, \hat{x}_n)\n\end{array}
$$

Moreover, if the map $X(s,.)$ is linear (in this case $U = \mathbb{R}^n$) then the solution $\alpha(s)$ is defined for all $s \in (a, b)$.

Since in (1.2) the map $X(s, v) = A(s)v$ for $(s, v) \in (a, b) \times \mathbb{R}^9$ is linear, there exists a unique solution $F:(a,b)\to \mathbb{R}^9$ to the initial value problem (1.2).

We claim that the vectors $\{T(s), N(s), B(s)\}\$ are orthonormal, for each $s \in (a, b)$. To see this we define the functions

$$
\sigma_1(s) = \langle T(s), T(s) \rangle \n\sigma_2(s) = \langle N(s), N(s) \rangle \n\sigma_3(s) = \langle B(s), B(s) \rangle \n\eta_1(s) = \langle T(s), N(s) \rangle \n\eta_2(s) = \langle N(s), B(s) \rangle \n\eta_3(s) = \langle B(s), T(s) \rangle
$$

and write the differential equations satisfied by them using (1.1). Observe that

$$
\sigma_1'(s) = 2 < T(s), T'(s) >= 2 < T(s), \kappa(s) N(s) >= 2\kappa(s) < T(s), N(s) >= 2\kappa(s) \eta_1(s)
$$

using the equation (1.2). Similar computations can be done for remaining functions using (1.2) to get

$$
\sigma'_1(s) = 2\kappa(s)\eta_1(s)
$$

\n
$$
\sigma'_2(s) = -2\kappa(s)\eta_1(s) - 2\tau(s)\eta_2(s)
$$

\n
$$
\sigma'_3(s) = 2\tau(s)\eta_2(s)
$$

\n
$$
\eta'_1(s) = \kappa(s)\sigma_2(s) - \kappa(s)\sigma_1(s) - \tau(s)\eta_3(s)
$$

\n
$$
\eta'_2(s) = -\kappa(s)\eta_3(s) - \tau(s)\sigma_3(s) + \tau(s)\sigma_2(s)
$$

\n
$$
\eta'_3(s) = \tau(s)\eta_1(s) + \kappa(s)\eta_2(s)
$$

Thus $G(s) = (\sigma_1(s), \sigma_2(s), \sigma_3(s), \eta_1(s), \eta_2(s), \eta_3(s)) \in \mathbb{R}^6$ is a solution for the system

$$
\frac{dG}{ds} = B(s)G(s) \nG(s_0) = (1, 1, 1, 0, 0, 0)
$$
\n(1.4)

where $B(s)$ is a 6×6 matrix

$$
B(s) = \begin{pmatrix} 0 & 0 & 0 & 2\kappa(s) & 0 & 0 \\ 0 & 0 & 0 & -2\kappa(s) & 0 & -\tau(s) \\ 0 & 0 & 0 & 0 & 2\tau(s) & 0 \\ -\kappa(s) & \kappa(s) & 0 & 0 & 0 & -\tau(s) \\ 0 & \tau(s) & -\tau(s) & 0 & 0 & -\kappa(s) \\ 0 & 0 & 0 & \tau(s) & \kappa(s) & 0 \end{pmatrix}.
$$
(1.5)

Since the system is linear and the constant curve $\alpha(s) = (1, 1, 1, 0, 0, 0)$ is a solution of the system (1.4), uniqueness of solution implies that $G(s) = \alpha(s)$ for all s and hence the claim is true.

Define $\gamma(s) := \int^s T(s) ds$. s0

Exercise: Verify that $\gamma : (a, b) \to \mathbb{R}^3$ is the required curve.

Step II: Let $\tilde{\gamma}$: $(a, b) \to \mathbb{R}^3$ be a regular parametrized curve with curvature $\kappa(s)$ and torsion $\tau(s)$. For $s_1 \in (a, b)$, let $p = \gamma(s_1)$ be a point on the curve represented by γ and $\tilde{p} = \tilde{\gamma}(s_1)$ be the point on $\tilde{\gamma}$. The vectors $\{\vec{t}(s_1), \vec{n}(s_1), \vec{b}(s_1)\}$ and $\{\vec{t}(s_1), \vec{n}(s_2)\}$ $\overrightarrow{\hat{t}}\left(s_{1}\right) ,\overrightarrow{\hat{n}}% _{1}=\overrightarrow{\hat{n}}\left(s_{1}\right) ,$ $\vec{\widetilde{n}}(s_1), \vec{\widetilde{b}}(s_1)$ } are both orthonormal bases of \mathbb{R}^3 (similar to the standard basis in \mathbb{R}^3). Hence there exists a rotation ρ of \mathbb{R}^3 which maps the orthonormal basis $\{\overrightarrow{t}(s_1), \overrightarrow{n}(s_1), \overrightarrow{b}(s_1)\}$ onto $\{\overrightarrow{t}(s_1), \overrightarrow{b}(s_1)\}$ $\overrightarrow{\widetilde{t}}\left(s_{1}\right) ,\overrightarrow{\widetilde{n}}% _{1}=\overrightarrow{\widetilde{n}}\left(s_{1}\right) ,$ $\overrightarrow{\widetilde{n}}(s_1), \overrightarrow{\widetilde{b}}(s_1)\}.$ Choose a vector $a \in \mathbb{R}^3$ such that $T_a(\gamma(s_1)) = \gamma(s_1) + a = \tilde{\gamma}(s_1)$, i.e., T_a translates the point p to \tilde{p} .

Define $I = T_a \circ \rho$ and let $\gamma_1(s) := I(\gamma(s))$. Note that I is an isometry of \mathbb{R}^3 . Ex: Show that curvature of γ_1 is $\kappa(s)$ and the torsion is $\tau(s)$.

Clearly, both γ_1 and γ are solutions of the initial value problem

$$
\frac{dF}{ds} = A(s)F(s) \nF(s_1) = p
$$
\n(1.6)

with $A(s)$ as in (1.3). Thus existence and uniqueness theorem implies that

$$
\gamma(s) = \gamma_1(s)
$$

for all $s \in (a, b)$.

 \Box